Compare commits

..

2 Commits

Author SHA1 Message Date
Eduard Iten 95fd88e93e feat(modbus_tool): Adapt UI to full register map
- Update the TUI to display all new registers from the slave, including digital I/O and system status.
- Add new menu buttons to control digital outputs and set the watchdog timer.
- Add a placeholder button for the firmware update process.
- Fix various bugs, including incorrect argument passing in Modbus calls and a module import error.
2025-07-01 21:36:28 +02:00
Eduard Iten 21797d8507 feat(slave_node): Implement full Modbus register map
- Implement all remaining Modbus registers as defined in the documentation v1.0.
- Add support for digital I/O, system status, and a simulated watchdog.
- Implement a placeholder for the firmware update mechanism, including CRC calculation for received data chunks.
- Remove the input simulation timer; digital inputs are now static and ready for real hardware.
2025-07-01 21:36:10 +02:00
2 changed files with 220 additions and 292 deletions

View File

@ -11,6 +11,8 @@
#include <zephyr/modbus/modbus.h>
#include <zephyr/usb/usb_device.h>
#include <zephyr/settings/settings.h>
#include <zephyr/sys/crc.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/logging/log.h>
#include "modbus_bridge.h"
@ -21,54 +23,72 @@ LOG_MODULE_REGISTER(mbs_sample, LOG_LEVEL_INF);
#define APP_VERSION_MINOR 0
#define APP_VERSION_PATCH 0
/* Register Definitions from Documentation */
enum {
/* Valve Control & Status */
REG_INPUT_VALVE_STATE_MOVEMENT = 0x0000,
REG_INPUT_MOTOR_CURRENT_MA = 0x0001,
/* Digital Inputs */
REG_INPUT_DIGITAL_INPUTS_STATE = 0x0020,
REG_INPUT_BUTTON_EVENTS = 0x0021,
/* System Config & Status */
REG_INPUT_FIRMWARE_VERSION_MAJOR_MINOR = 0x00F0,
REG_INPUT_FIRMWARE_VERSION_PATCH = 0x00F1,
REG_INPUT_DEVICE_STATUS = 0x00F2,
REG_INPUT_UPTIME_SECONDS_LOW = 0x00F3,
REG_INPUT_UPTIME_SECONDS_HIGH = 0x00F4,
/* Firmware Update */
REG_INPUT_FWU_LAST_CHUNK_CRC = 0x0100,
};
enum {
/* Valve Control */
REG_HOLDING_VALVE_COMMAND = 0x0000,
REG_HOLDING_MAX_OPENING_TIME_S = 0x0001,
REG_HOLDING_MAX_CLOSING_TIME_S = 0x0002,
/* Digital Outputs */
REG_HOLDING_DIGITAL_OUTPUTS_STATE = 0x0010,
/* System Config */
REG_HOLDING_WATCHDOG_TIMEOUT_S = 0x00F0,
/* Firmware Update */
REG_HOLDING_FWU_COMMAND = 0x0100,
REG_HOLDING_FWU_CHUNK_OFFSET_LOW = 0x0101,
REG_HOLDING_FWU_CHUNK_OFFSET_HIGH = 0x0102,
REG_HOLDING_FWU_CHUNK_SIZE = 0x0103,
REG_HOLDING_FWU_DATA_BUFFER = 0x0180,
};
enum valve_state {
VALVE_STATE_CLOSED,
VALVE_STATE_OPEN,
};
enum valve_movement {
VALVE_MOVEMENT_IDLE,
VALVE_MOVEMENT_OPENING,
VALVE_MOVEMENT_CLOSING,
VALVE_MOVEMENT_ERROR,
};
/* Valve Simulation */
enum valve_state { VALVE_STATE_CLOSED, VALVE_STATE_OPEN };
enum valve_movement { VALVE_MOVEMENT_IDLE, VALVE_MOVEMENT_OPENING, VALVE_MOVEMENT_CLOSING, VALVE_MOVEMENT_ERROR };
static enum valve_state current_state = VALVE_STATE_CLOSED;
static enum valve_movement current_movement = VALVE_MOVEMENT_IDLE;
static uint16_t max_opening_time_s = 60;
static uint16_t max_closing_time_s = 60;
static uint16_t watchdog_timeout_s;
static int modbus_iface;
static struct k_work_delayable valve_work;
/* Digital I/O State */
static uint16_t digital_outputs_state = 0;
static uint16_t digital_inputs_state = 0; // Will be controlled by real hardware
static uint16_t button_events = 0; // Clear-on-read
/* System State */
static uint16_t device_status = 0; // 0 = OK
static uint16_t watchdog_timeout_s = 0;
/* Firmware Update State */
#define FWU_BUFFER_SIZE 256
static uint8_t fwu_buffer[FWU_BUFFER_SIZE];
static uint32_t fwu_chunk_offset = 0;
static uint16_t fwu_chunk_size = 0;
static uint16_t fwu_last_chunk_crc = 0;
/* Modbus Configuration */
static int modbus_iface;
static struct modbus_iface_param server_param = {
.mode = MODBUS_MODE_RTU,
.server = {
.user_cb = NULL, // Will be set later
.unit_id = 1,
},
.serial = {
.baud = 19200,
.parity = UART_CFG_PARITY_NONE,
},
.server = { .user_cb = NULL, .unit_id = 1 },
.serial = { .baud = 19200, .parity = UART_CFG_PARITY_NONE },
};
static void valve_work_handler(struct k_work *work)
@ -82,38 +102,15 @@ static void valve_work_handler(struct k_work *work)
current_movement = VALVE_MOVEMENT_IDLE;
}
static int coil_rd(uint16_t addr, bool *state)
{
*state = true;
LOG_INF("Coil read, addr %u, %d", addr, (int)*state);
return 0;
}
static int coil_wr(uint16_t addr, bool state)
{
LOG_INF("Coil write, addr %u, %d", addr, (int)state);
return 0;
}
static int holding_reg_rd(uint16_t addr, uint16_t *reg)
{
switch (addr) {
case REG_HOLDING_MAX_OPENING_TIME_S:
*reg = max_opening_time_s;
break;
case REG_HOLDING_MAX_CLOSING_TIME_S:
*reg = max_closing_time_s;
break;
case REG_HOLDING_WATCHDOG_TIMEOUT_S:
*reg = watchdog_timeout_s;
break;
default:
*reg = 0;
break;
case REG_HOLDING_MAX_OPENING_TIME_S: *reg = max_opening_time_s; break;
case REG_HOLDING_MAX_CLOSING_TIME_S: *reg = max_closing_time_s; break;
case REG_HOLDING_DIGITAL_OUTPUTS_STATE: *reg = digital_outputs_state; break;
case REG_HOLDING_WATCHDOG_TIMEOUT_S: *reg = watchdog_timeout_s; break;
default: *reg = 0; break;
}
LOG_INF("Holding register read, addr %u, value %u", addr, *reg);
return 0;
}
@ -125,19 +122,16 @@ static int holding_reg_wr(uint16_t addr, uint16_t reg)
if (current_state == VALVE_STATE_CLOSED) {
current_state = VALVE_STATE_OPEN;
current_movement = VALVE_MOVEMENT_OPENING;
LOG_INF("Virtual valve opening...");
k_work_schedule(&valve_work, K_MSEC(max_opening_time_s * 1000 * 0.9));
k_work_schedule(&valve_work, K_SECONDS(max_opening_time_s));
}
} else if (reg == 2) { /* Close */
if (current_state == VALVE_STATE_OPEN) {
current_movement = VALVE_MOVEMENT_CLOSING;
LOG_INF("Virtual valve closing...");
k_work_schedule(&valve_work, K_MSEC(max_closing_time_s * 1000 * 0.9));
k_work_schedule(&valve_work, K_SECONDS(max_closing_time_s));
}
} else if (reg == 0) { /* Stop */
k_work_cancel_delayable(&valve_work);
current_movement = VALVE_MOVEMENT_IDLE;
LOG_INF("Virtual valve movement stopped");
}
break;
case REG_HOLDING_MAX_OPENING_TIME_S:
@ -148,14 +142,43 @@ static int holding_reg_wr(uint16_t addr, uint16_t reg)
max_closing_time_s = reg;
settings_save_one("valve/max_close_time", &max_closing_time_s, sizeof(max_closing_time_s));
break;
case REG_HOLDING_DIGITAL_OUTPUTS_STATE:
digital_outputs_state = reg;
LOG_INF("Digital outputs set to 0x%04X", digital_outputs_state);
// Here you would typically write to GPIOs
break;
case REG_HOLDING_WATCHDOG_TIMEOUT_S:
watchdog_timeout_s = reg;
LOG_INF("Watchdog timeout set to %u s", watchdog_timeout_s);
break;
case REG_HOLDING_FWU_COMMAND:
if (reg == 1) { // Verify Chunk
LOG_INF("FWU: Chunk at offset %u (size %u) verified by client, writing to flash (simulated).", fwu_chunk_offset, fwu_chunk_size);
} else if (reg == 2) { // Finalize Update
LOG_INF("FWU: Finalize command received. Rebooting (simulated).");
// In a real scenario: sys_reboot(SYS_REBOOT_WARM);
}
break;
case REG_HOLDING_FWU_CHUNK_OFFSET_LOW: fwu_chunk_offset = (fwu_chunk_offset & 0xFFFF0000) | reg; break;
case REG_HOLDING_FWU_CHUNK_OFFSET_HIGH: fwu_chunk_offset = (fwu_chunk_offset & 0x0000FFFF) | ((uint32_t)reg << 16); break;
case REG_HOLDING_FWU_CHUNK_SIZE:
fwu_chunk_size = (reg > FWU_BUFFER_SIZE) ? FWU_BUFFER_SIZE : reg;
break;
default:
// Handle FWU_DATA_BUFFER writes
if (addr >= REG_HOLDING_FWU_DATA_BUFFER && addr < (REG_HOLDING_FWU_DATA_BUFFER + (FWU_BUFFER_SIZE / 2))) {
uint16_t index = (addr - REG_HOLDING_FWU_DATA_BUFFER) * 2;
if (index < sizeof(fwu_buffer)) {
sys_put_be16(reg, &fwu_buffer[index]);
// After the last register of a chunk is written, calculate CRC
if (index + 2 >= fwu_chunk_size) {
fwu_last_chunk_crc = crc16_ccitt(0xffff, fwu_buffer, fwu_chunk_size);
LOG_INF("FWU: Chunk received, CRC is 0x%04X", fwu_last_chunk_crc);
}
}
}
break;
}
LOG_INF("Holding register write, addr %u, value %u", addr, reg);
return 0;
}
@ -164,39 +187,25 @@ static int input_reg_rd(uint16_t addr, uint16_t *reg)
uint32_t uptime_s = k_uptime_get_32() / 1000;
switch (addr) {
case REG_INPUT_VALVE_STATE_MOVEMENT:
*reg = (current_movement << 8) | (current_state & 0xFF);
break;
case REG_INPUT_MOTOR_CURRENT_MA:
*reg = 50; /* Dummy value */
break;
case REG_INPUT_FIRMWARE_VERSION_MAJOR_MINOR:
*reg = (APP_VERSION_MAJOR << 8) | (APP_VERSION_MINOR & 0xFF);
break;
case REG_INPUT_FIRMWARE_VERSION_PATCH:
*reg = APP_VERSION_PATCH;
break;
case REG_INPUT_DEVICE_STATUS:
*reg = 0; /* 0 = OK */
break;
case REG_INPUT_UPTIME_SECONDS_LOW:
*reg = (uint16_t)(uptime_s & 0xFFFF);
break;
case REG_INPUT_UPTIME_SECONDS_HIGH:
*reg = (uint16_t)(uptime_s >> 16);
break;
default:
*reg = 0;
case REG_INPUT_VALVE_STATE_MOVEMENT: *reg = (current_movement << 8) | (current_state & 0xFF); break;
case REG_INPUT_MOTOR_CURRENT_MA: *reg = (current_movement != VALVE_MOVEMENT_IDLE) ? 150 : 10; break; // Simulated
case REG_INPUT_DIGITAL_INPUTS_STATE: *reg = digital_inputs_state; break;
case REG_INPUT_BUTTON_EVENTS:
*reg = button_events;
button_events = 0; // Clear-on-read
break;
case REG_INPUT_FIRMWARE_VERSION_MAJOR_MINOR: *reg = (APP_VERSION_MAJOR << 8) | (APP_VERSION_MINOR & 0xFF); break;
case REG_INPUT_FIRMWARE_VERSION_PATCH: *reg = APP_VERSION_PATCH; break;
case REG_INPUT_DEVICE_STATUS: *reg = device_status; break;
case REG_INPUT_UPTIME_SECONDS_LOW: *reg = (uint16_t)(uptime_s & 0xFFFF); break;
case REG_INPUT_UPTIME_SECONDS_HIGH: *reg = (uint16_t)(uptime_s >> 16); break;
case REG_INPUT_FWU_LAST_CHUNK_CRC: *reg = fwu_last_chunk_crc; break;
default: *reg = 0; break;
}
LOG_INF("Input register read, addr %u, value %u", addr, *reg);
return 0;
}
static struct modbus_user_callbacks mbs_cbs = {
.coil_rd = coil_rd,
.coil_wr = coil_wr,
.holding_reg_rd = holding_reg_rd,
.holding_reg_wr = holding_reg_wr,
.input_reg_rd = input_reg_rd,
@ -207,146 +216,71 @@ static struct modbus_user_callbacks mbs_cbs = {
int modbus_reconfigure(uint32_t baudrate, uint8_t unit_id)
{
int err;
LOG_INF("Reconfiguring Modbus: baudrate=%u, id=%u", baudrate, unit_id);
err = modbus_disable(modbus_iface);
if (err) {
LOG_ERR("Failed to disable Modbus: %d", err);
return err;
}
if (err) { return err; }
server_param.serial.baud = baudrate;
server_param.server.unit_id = unit_id;
err = modbus_init_server(modbus_iface, server_param);
if (err) {
LOG_ERR("Failed to re-init Modbus server: %d", err);
return err;
}
return 0;
}
uint32_t modbus_get_baudrate(void)
{
return server_param.serial.baud;
}
uint32_t modbus_get_baudrate(void) { return server_param.serial.baud; }
uint8_t modbus_get_unit_id(void) { return server_param.server.unit_id; }
void valve_set_max_open_time(uint16_t seconds) { max_opening_time_s = seconds; settings_save_one("valve/max_open_time", &max_opening_time_s, sizeof(max_opening_time_s)); }
void valve_set_max_close_time(uint16_t seconds) { max_closing_time_s = seconds; settings_save_one("valve/max_close_time", &max_closing_time_s, sizeof(max_closing_time_s)); }
uint16_t valve_get_max_open_time(void) { return max_opening_time_s; }
uint16_t valve_get_max_close_time(void) { return max_closing_time_s; }
uint8_t modbus_get_unit_id(void)
{
return server_param.server.unit_id;
}
void valve_set_max_open_time(uint16_t seconds)
{
max_opening_time_s = seconds;
settings_save_one("valve/max_open_time", &max_opening_time_s, sizeof(max_opening_time_s));
}
void valve_set_max_close_time(uint16_t seconds)
{
max_closing_time_s = seconds;
settings_save_one("valve/max_close_time", &max_closing_time_s, sizeof(max_closing_time_s));
}
uint16_t valve_get_max_open_time(void)
{
return max_opening_time_s;
}
uint16_t valve_get_max_close_time(void)
{
return max_closing_time_s;
}
static int settings_load_cb(const char *name, size_t len,
settings_read_cb read_cb, void *cb_arg)
static int settings_load_cb(const char *name, size_t len, settings_read_cb read_cb, void *cb_arg)
{
const char *next;
int rc;
if (settings_name_steq(name, "baudrate", &next) && !next) {
rc = read_cb(cb_arg, &server_param.serial.baud, sizeof(server_param.serial.baud));
if (rc < 0) {
return rc;
return (rc < 0) ? rc : 0;
}
LOG_INF("Loaded modbus/baudrate: %u", server_param.serial.baud);
return 0;
}
if (settings_name_steq(name, "unit_id", &next) && !next) {
rc = read_cb(cb_arg, &server_param.server.unit_id, sizeof(server_param.server.unit_id));
if (rc < 0) {
return rc;
return (rc < 0) ? rc : 0;
}
LOG_INF("Loaded modbus/unit_id: %u", server_param.server.unit_id);
return 0;
}
if (settings_name_steq(name, "max_open_time", &next) && !next) {
rc = read_cb(cb_arg, &max_opening_time_s, sizeof(max_opening_time_s));
if (rc < 0) {
return rc;
return (rc < 0) ? rc : 0;
}
LOG_INF("Loaded valve/max_open_time: %u", max_opening_time_s);
return 0;
}
if (settings_name_steq(name, "max_close_time", &next) && !next) {
rc = read_cb(cb_arg, &max_closing_time_s, sizeof(max_closing_time_s));
if (rc < 0) {
return rc;
return (rc < 0) ? rc : 0;
}
LOG_INF("Loaded valve/max_close_time: %u", max_closing_time_s);
return 0;
}
return -ENOENT;
}
SETTINGS_STATIC_HANDLER_DEFINE(modbus, "modbus", NULL, settings_load_cb, NULL, NULL);
SETTINGS_STATIC_HANDLER_DEFINE(valve, "valve", NULL, settings_load_cb, NULL, NULL);
static int init_modbus_server(void)
{
const char iface_name[] = {DEVICE_DT_NAME(MODBUS_NODE)};
modbus_iface = modbus_iface_get_by_name(iface_name);
if (modbus_iface < 0) {
LOG_ERR("Failed to get iface index for %s", iface_name);
return modbus_iface;
}
if (modbus_iface < 0) { return modbus_iface; }
server_param.server.user_cb = &mbs_cbs;
return modbus_init_server(modbus_iface, server_param);
}
int main(void)
{
LOG_INF("Starting APP");
LOG_INF("Starting Irrigation System Slave Node");
k_work_init_delayable(&valve_work, valve_work_handler);
if (settings_subsys_init()) {
LOG_ERR("Failed to initialize settings subsystem");
if (settings_subsys_init() || settings_load()) {
LOG_ERR("Settings initialization or loading failed");
}
if (settings_load()) {
LOG_ERR("Failed to load settings");
}
if (init_modbus_server()) {
LOG_ERR("Modbus RTU server initialization failed");
}
LOG_INF("APP started");
while (1) {
k_sleep(K_MSEC(1000));
return 0;
}
LOG_INF("Irrigation System Slave Node started successfully");
return 0;
}

View File

@ -6,19 +6,34 @@ import sys
import curses
from pymodbus.client import ModbusSerialClient
from pymodbus.exceptions import ModbusException
import os
# Register Definitions
# --- Register Definitions ---
# Input Registers
REG_INPUT_VALVE_STATE_MOVEMENT = 0x0000
REG_INPUT_MOTOR_CURRENT_MA = 0x0001
REG_INPUT_DIGITAL_INPUTS_STATE = 0x0020
REG_INPUT_BUTTON_EVENTS = 0x0021
REG_INPUT_FIRMWARE_VERSION_MAJOR_MINOR = 0x00F0
REG_INPUT_FIRMWARE_VERSION_PATCH = 0x00F1
REG_INPUT_DEVICE_STATUS = 0x00F2
REG_INPUT_UPTIME_SECONDS_LOW = 0x00F3
REG_INPUT_UPTIME_SECONDS_HIGH = 0x00F4
REG_INPUT_FWU_LAST_CHUNK_CRC = 0x0100
# Holding Registers
REG_HOLDING_VALVE_COMMAND = 0x0000
REG_HOLDING_MAX_OPENING_TIME_S = 0x0001
REG_HOLDING_MAX_CLOSING_TIME_S = 0x0002
REG_HOLDING_DIGITAL_OUTPUTS_STATE = 0x0010
REG_HOLDING_WATCHDOG_TIMEOUT_S = 0x00F0
REG_HOLDING_FWU_COMMAND = 0x0100
REG_HOLDING_FWU_CHUNK_OFFSET_LOW = 0x0101
REG_HOLDING_FWU_CHUNK_OFFSET_HIGH = 0x0102
REG_HOLDING_FWU_CHUNK_SIZE = 0x0103
REG_HOLDING_FWU_DATA_BUFFER = 0x0180
# Global state
# --- Global State ---
stop_event = threading.Event()
client = None
status_data = {}
@ -26,26 +41,16 @@ status_lock = threading.Lock()
def format_uptime(seconds):
"""Formats seconds into a human-readable d/h/m/s string."""
if not isinstance(seconds, (int, float)) or seconds < 0:
return "N/A"
if seconds == 0:
return "0s"
days, remainder = divmod(seconds, 86400)
hours, remainder = divmod(remainder, 3600)
minutes, secs = divmod(remainder, 60)
if not isinstance(seconds, (int, float)) or seconds < 0: return "N/A"
if seconds == 0: return "0s"
days, rem = divmod(seconds, 86400)
hours, rem = divmod(rem, 3600)
minutes, secs = divmod(rem, 60)
parts = []
if days > 0:
parts.append(f"{int(days)}d")
if hours > 0:
parts.append(f"{int(hours)}h")
if minutes > 0:
parts.append(f"{int(minutes)}m")
# Always show seconds if it's the only unit or if other units are present
if secs > 0 or not parts:
parts.append(f"{int(secs)}s")
if days > 0: parts.append(f"{int(days)}d")
if hours > 0: parts.append(f"{int(hours)}h")
if minutes > 0: parts.append(f"{int(minutes)}m")
if secs > 0 or not parts: parts.append(f"{int(secs)}s")
return " ".join(parts)
def poll_status(slave_id, interval):
@ -54,32 +59,42 @@ def poll_status(slave_id, interval):
while not stop_event.is_set():
new_data = {"error": None}
try:
# Read all registers in a few calls
rr = client.read_input_registers(REG_INPUT_VALVE_STATE_MOVEMENT, count=2, slave=slave_id)
hr = client.read_holding_registers(REG_HOLDING_MAX_OPENING_TIME_S, count=2, slave=slave_id)
rr_sys = client.read_input_registers(REG_INPUT_FIRMWARE_VERSION_MAJOR_MINOR, count=5, slave=slave_id)
# Grouped reads for efficiency
ir_valve = client.read_input_registers(REG_INPUT_VALVE_STATE_MOVEMENT, count=2, slave=slave_id)
ir_dig = client.read_input_registers(REG_INPUT_DIGITAL_INPUTS_STATE, count=2, slave=slave_id)
ir_sys = client.read_input_registers(REG_INPUT_FIRMWARE_VERSION_MAJOR_MINOR, count=5, slave=slave_id)
hr_valve = client.read_holding_registers(REG_HOLDING_MAX_OPENING_TIME_S, count=2, slave=slave_id)
hr_dig = client.read_holding_registers(REG_HOLDING_DIGITAL_OUTPUTS_STATE, count=1, slave=slave_id)
hr_sys = client.read_holding_registers(REG_HOLDING_WATCHDOG_TIMEOUT_S, count=1, slave=slave_id)
if rr.isError(): raise ModbusException(f"reading valve status: {rr}")
if hr.isError(): raise ModbusException(f"reading holding registers: {hr}")
if rr_sys.isError(): raise ModbusException(f"reading system status: {rr_sys}")
# Check for errors
for res in [ir_valve, ir_dig, ir_sys, hr_valve, hr_dig, hr_sys]:
if res.isError(): raise ModbusException(str(res))
valve_state_raw = rr.registers[0]
# --- Process Valve & Motor Data ---
valve_state_raw = ir_valve.registers[0]
movement_map = {0: "Idle", 1: "Opening", 2: "Closing", 3: "Error"}
state_map = {0: "Closed", 1: "Open"}
new_data["movement"] = movement_map.get(valve_state_raw >> 8, 'Unknown')
new_data["state"] = state_map.get(valve_state_raw & 0xFF, 'Unknown')
new_data["motor_current"] = f"{rr.registers[1]} mA"
new_data["open_time"] = f"{hr.registers[0]}s"
new_data["close_time"] = f"{hr.registers[1]}s"
new_data["motor_current"] = f"{ir_valve.registers[1]} mA"
new_data["open_time"] = f"{hr_valve.registers[0]}s"
new_data["close_time"] = f"{hr_valve.registers[1]}s"
fw_major = rr_sys.registers[0] >> 8
fw_minor = rr_sys.registers[0] & 0xFF
fw_patch = rr_sys.registers[1]
uptime_low = rr_sys.registers[3]
uptime_high = rr_sys.registers[4]
uptime_seconds = (uptime_high << 16) | uptime_low
# --- Process Digital I/O ---
new_data["digital_inputs"] = f"0x{ir_dig.registers[0]:04X}"
new_data["button_events"] = f"0x{ir_dig.registers[1]:04X}"
new_data["digital_outputs"] = f"0x{hr_dig.registers[0]:04X}"
# --- Process System Data ---
fw_major = ir_sys.registers[0] >> 8
fw_minor = ir_sys.registers[0] & 0xFF
fw_patch = ir_sys.registers[1]
uptime_seconds = (ir_sys.registers[4] << 16) | ir_sys.registers[3]
new_data["firmware"] = f"v{fw_major}.{fw_minor}.{fw_patch}"
new_data["device_status"] = "OK" if ir_sys.registers[2] == 0 else "ERROR"
new_data["uptime"] = format_uptime(uptime_seconds)
new_data["watchdog"] = f"{hr_sys.registers[0]}s"
except ModbusException as e:
new_data["error"] = f"Modbus Error: {e}"
@ -94,7 +109,6 @@ def draw_button(stdscr, y, x, text, selected=False):
"""Draws a button with a border, handling selection highlight."""
button_width = len(text) + 4
color = curses.color_pair(2) if selected else curses.color_pair(1)
stdscr.addstr(y, x, " " * button_width, color)
stdscr.addstr(y, x + 2, text, color)
stdscr.addstr(y - 1, x, "" + "" * (button_width - 2) + "", color)
@ -109,105 +123,90 @@ def main_menu(stdscr, slave_id):
stdscr.nodelay(1)
stdscr.timeout(100)
# --- Color Pairs ---
curses.start_color()
curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_BLUE) # Main: white on blue
curses.init_pair(2, curses.COLOR_BLUE, curses.COLOR_WHITE) # Selected: blue on white
curses.init_pair(3, curses.COLOR_RED, curses.COLOR_BLUE) # Error: red on blue
curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_BLUE)
curses.init_pair(2, curses.COLOR_BLUE, curses.COLOR_WHITE)
curses.init_pair(3, curses.COLOR_RED, curses.COLOR_BLUE)
stdscr.bkgd(' ', curses.color_pair(1))
# --- UI State ---
menu = ["Open Valve", "Close Valve", "Stop Valve", "Set Max Opening Time", "Set Max Closing Time", "Exit"]
menu = ["Open Valve", "Close Valve", "Stop Valve", "Toggle Output 1", "Toggle Output 2", "Set Watchdog", "Firmware Update", "Exit"]
current_row_idx = 0
# State for transient messages
message = ""
message_time = 0
# State for user input
input_mode = False
input_prompt = ""
input_str = ""
input_target_reg = 0
message, message_time = "", 0
input_mode, input_prompt, input_str, input_target_reg = False, "", "", 0
while not stop_event.is_set():
h, w = stdscr.getmaxyx()
# --- Handle Input and State Changes ---
key = stdscr.getch()
if input_mode:
if key in [10, 13]: # Enter
try:
seconds = int(input_str)
client.write_register(input_target_reg, seconds, slave=slave_id)
message = f"-> Set time to {seconds}s"
except ValueError:
message = "-> Invalid input. Please enter a number."
value = int(input_str)
client.write_register(input_target_reg, value, slave=slave_id)
message = f"-> Set register 0x{input_target_reg:04X} to {value}"
except Exception as e:
message = f"-> Error: {e}"
message_time = time.time()
input_mode = False
input_str = ""
message_time, input_mode, input_str = time.time(), False, ""
elif key == curses.KEY_BACKSPACE or key == 127:
input_str = input_str[:-1]
elif key != -1 and chr(key).isprintable():
input_str += chr(key)
else: # Navigation mode
if key == curses.KEY_UP and current_row_idx > 0:
current_row_idx -= 1
elif key == curses.KEY_DOWN and current_row_idx < len(menu) - 1:
current_row_idx += 1
if key == curses.KEY_UP: current_row_idx = (current_row_idx - 1) % len(menu)
elif key == curses.KEY_DOWN: current_row_idx = (current_row_idx + 1) % len(menu)
elif key == curses.KEY_ENTER or key in [10, 13]:
selected_option = menu[current_row_idx]
message_time = time.time() # Set time for all actions
message_time = time.time()
if selected_option == "Exit":
stop_event.set()
continue
elif selected_option == "Open Valve":
client.write_register(REG_HOLDING_VALVE_COMMAND, 1, slave=slave_id)
message = "-> Sent OPEN command"
elif selected_option == "Close Valve":
client.write_register(REG_HOLDING_VALVE_COMMAND, 2, slave=slave_id)
message = "-> Sent CLOSE command"
elif selected_option == "Stop Valve":
client.write_register(REG_HOLDING_VALVE_COMMAND, 0, slave=slave_id)
message = "-> Sent STOP command"
elif "Set Max" in selected_option:
input_mode = True
input_prompt = f"Enter new value for '{selected_option}' (seconds): "
input_target_reg = REG_HOLDING_MAX_OPENING_TIME_S if "Opening" in selected_option else REG_HOLDING_MAX_CLOSING_TIME_S
if selected_option == "Exit": stop_event.set(); continue
elif selected_option == "Open Valve": client.write_register(REG_HOLDING_VALVE_COMMAND, 1, slave=slave_id); message = "-> Sent OPEN command"
elif selected_option == "Close Valve": client.write_register(REG_HOLDING_VALVE_COMMAND, 2, slave=slave_id); message = "-> Sent CLOSE command"
elif selected_option == "Stop Valve": client.write_register(REG_HOLDING_VALVE_COMMAND, 0, slave=slave_id); message = "-> Sent STOP command"
elif "Toggle Output" in selected_option:
bit = 0 if "1" in selected_option else 1
try:
current_val = client.read_holding_registers(REG_HOLDING_DIGITAL_OUTPUTS_STATE, count=1, slave=slave_id).registers[0]
new_val = current_val ^ (1 << bit)
client.write_register(REG_HOLDING_DIGITAL_OUTPUTS_STATE, new_val, slave=slave_id)
message = f"-> Toggled Output {bit+1}"
except Exception as e: message = f"-> Error: {e}"
elif selected_option == "Set Watchdog":
input_mode, input_prompt, input_target_reg = True, "Enter Watchdog Timeout (s): ", REG_HOLDING_WATCHDOG_TIMEOUT_S
elif selected_option == "Firmware Update":
message = "-> Firmware update process not yet implemented."
# --- Drawing Logic (Single Source of Truth) ---
stdscr.clear()
# 1. Draw Status Area
with status_lock:
current_data = status_data.copy()
with status_lock: current_data = status_data.copy()
if current_data.get("error"):
stdscr.addstr(0, 0, current_data["error"], curses.color_pair(3) | curses.A_BOLD)
else:
bold = curses.color_pair(1) | curses.A_BOLD
normal = curses.color_pair(1)
col1_x, col2_x, col3_x = 2, 35, 70
stdscr.addstr(1, col1_x, "Valve State:", bold); stdscr.addstr(1, col1_x + 14, str(current_data.get('state', 'N/A')), normal)
stdscr.addstr(2, col1_x, "Movement:", bold); stdscr.addstr(2, col1_x + 14, str(current_data.get('movement', 'N/A')), normal)
stdscr.addstr(3, col1_x, "Motor Current:", bold); stdscr.addstr(3, col1_x + 14, str(current_data.get('motor_current', 'N/A')), normal)
stdscr.addstr(1, col2_x, "Max Open Time:", bold); stdscr.addstr(1, col2_x + 16, str(current_data.get('open_time', 'N/A')), normal)
stdscr.addstr(2, col2_x, "Max Close Time:", bold); stdscr.addstr(2, col2_x + 16, str(current_data.get('close_time', 'N/A')), normal)
stdscr.addstr(1, col3_x, "Firmware:", bold); stdscr.addstr(1, col3_x + 11, str(current_data.get('firmware', 'N/A')), normal)
stdscr.addstr(2, col3_x, "Uptime:", bold); stdscr.addstr(2, col3_x + 11, str(current_data.get('uptime', 'N/A')), normal)
bold, normal = curses.color_pair(1) | curses.A_BOLD, curses.color_pair(1)
# Status Area
col1, col2, col3, col4 = 2, 30, 58, 88
stdscr.addstr(1, col1, "State:", bold); stdscr.addstr(1, col1 + 18, str(current_data.get('state', 'N/A')), normal)
stdscr.addstr(2, col1, "Movement:", bold); stdscr.addstr(2, col1 + 18, str(current_data.get('movement', 'N/A')), normal)
stdscr.addstr(3, col1, "Motor Current:", bold); stdscr.addstr(3, col1 + 18, str(current_data.get('motor_current', 'N/A')), normal)
stdscr.addstr(1, col2, "Digital Inputs:", bold); stdscr.addstr(1, col2 + 18, str(current_data.get('digital_inputs', 'N/A')), normal)
stdscr.addstr(2, col2, "Digital Outputs:", bold); stdscr.addstr(2, col2 + 18, str(current_data.get('digital_outputs', 'N/A')), normal)
stdscr.addstr(3, col2, "Button Events:", bold); stdscr.addstr(3, col2 + 18, str(current_data.get('button_events', 'N/A')), normal)
stdscr.addstr(1, col3, "Max Open Time:", bold); stdscr.addstr(1, col3 + 16, str(current_data.get('open_time', 'N/A')), normal)
stdscr.addstr(2, col3, "Max Close Time:", bold); stdscr.addstr(2, col3 + 16, str(current_data.get('close_time', 'N/A')), normal)
stdscr.addstr(3, col3, "Watchdog:", bold); stdscr.addstr(3, col3 + 16, str(current_data.get('watchdog', 'N/A')), normal)
stdscr.addstr(1, col4, "Firmware:", bold); stdscr.addstr(1, col4 + 12, str(current_data.get('firmware', 'N/A')), normal)
stdscr.addstr(2, col4, "Uptime:", bold); stdscr.addstr(2, col4 + 12, str(current_data.get('uptime', 'N/A')), normal)
stdscr.addstr(3, col4, "Device Status:", bold); stdscr.addstr(3, col4 + 12, str(current_data.get('device_status', 'N/A')), normal)
stdscr.addstr(5, 0, "" * (w - 1), normal)
# 2. Draw Menu Buttons
for idx, row in enumerate(menu):
x = w // 2 - (len(row) + 4) // 2
y = h // 2 - len(menu) + (idx * 3)
draw_button(stdscr, y, x, row, idx == current_row_idx)
# 3. Draw Transient Message or Input Prompt
if time.time() - message_time < 2.0:
stdscr.addstr(h - 2, 0, message.ljust(w - 1), curses.color_pair(1) | curses.A_BOLD)
@ -231,14 +230,10 @@ def main():
client = ModbusSerialClient(port=args.port, baudrate=args.baud, stopbits=1, bytesize=8, parity="N", timeout=1)
if not client.connect():
print(f"Error: Failed to connect to serial port {args.port}")
sys.exit(1)
print(f"Error: Failed to connect to serial port {args.port}"); sys.exit(1)
print(f"Successfully connected to {args.port}. Starting UI...")
time.sleep(0.5)
poll_thread = threading.Thread(target=poll_status, args=(args.slave_id, args.interval))
poll_thread.daemon = True
print("Successfully connected. Starting UI..."); time.sleep(0.5)
poll_thread = threading.Thread(target=poll_status, args=(args.slave_id, args.interval), daemon=True)
poll_thread.start()
try:
@ -246,8 +241,7 @@ def main():
finally:
stop_event.set()
print("\nExiting...")
if client.is_socket_open():
client.close()
if client.is_socket_open(): client.close()
poll_thread.join(timeout=2)
if __name__ == "__main__":