348 lines
9.8 KiB
C
348 lines
9.8 KiB
C
/**
|
|
* @file adc_sensor.c
|
|
* @brief Implementation of the ADC sensor library.
|
|
*
|
|
* This file contains the implementation for initializing and reading from ADC
|
|
* sensors. It currently provides simulated values for voltage and current, with
|
|
* placeholders for real hardware ADC implementation including GPIO control.
|
|
*/
|
|
|
|
#include <lib/adc_sensor.h>
|
|
#include <zephyr/devicetree.h>
|
|
#include <zephyr/drivers/adc.h>
|
|
#include <zephyr/drivers/gpio.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/logging/log.h>
|
|
|
|
LOG_MODULE_REGISTER(adc_sensor, LOG_LEVEL_INF);
|
|
|
|
// Simulated values
|
|
#define SIMULATED_VOLTAGE_MV 12000
|
|
#define SIMULATED_CURRENT_MA 45
|
|
|
|
// Devicetree node checks
|
|
#define VOLTAGE_SENSOR_NODE DT_NODELABEL(supply_voltage)
|
|
#define CURRENT_SENSOR_NODE DT_NODELABEL(motor_current)
|
|
|
|
#ifndef CONFIG_ADC_SENSOR_SIMULATED
|
|
// ADC device reference
|
|
#if DT_NODE_EXISTS(VOLTAGE_SENSOR_NODE)
|
|
#define ADC_NODE DT_PHANDLE(VOLTAGE_SENSOR_NODE, io_channels)
|
|
#define ADC_CHANNEL DT_PHA(VOLTAGE_SENSOR_NODE, io_channels, input)
|
|
#define ADC_RESOLUTION 12
|
|
#define ADC_REFERENCE_MV DT_PROP(VOLTAGE_SENSOR_NODE, reference_mv)
|
|
#define VOLTAGE_DIVIDER_RATIO \
|
|
DT_PROP(VOLTAGE_SENSOR_NODE, voltage_divider_ratio)
|
|
|
|
static const struct device *adc_dev;
|
|
static struct adc_channel_cfg adc_channel_cfg = {
|
|
.gain = ADC_GAIN_1,
|
|
.reference = ADC_REF_INTERNAL,
|
|
.acquisition_time = ADC_ACQ_TIME_DEFAULT,
|
|
.channel_id = ADC_CHANNEL,
|
|
.differential = 0};
|
|
|
|
static struct adc_sequence adc_sequence = {
|
|
.channels = BIT(ADC_CHANNEL),
|
|
.buffer_size = sizeof(uint16_t),
|
|
.resolution = ADC_RESOLUTION,
|
|
};
|
|
|
|
static uint16_t adc_buffer;
|
|
#endif
|
|
#endif
|
|
|
|
static bool initialized = false;
|
|
|
|
#ifndef CONFIG_ADC_SENSOR_SIMULATED
|
|
// GPIO specs for voltage sensor (if devicetree nodes exist)
|
|
#if DT_NODE_EXISTS(VOLTAGE_SENSOR_NODE)
|
|
static const struct gpio_dt_spec voltage_sen_gpio =
|
|
GPIO_DT_SPEC_GET(VOLTAGE_SENSOR_NODE, sen_gpios);
|
|
static const struct gpio_dt_spec voltage_s0_gpio =
|
|
GPIO_DT_SPEC_GET(VOLTAGE_SENSOR_NODE, s0_gpios);
|
|
static const struct gpio_dt_spec voltage_s1_gpio =
|
|
GPIO_DT_SPEC_GET(VOLTAGE_SENSOR_NODE, s1_gpios);
|
|
#endif
|
|
|
|
// GPIO specs for current sensor (if devicetree nodes exist)
|
|
#if DT_NODE_EXISTS(CURRENT_SENSOR_NODE)
|
|
static const struct gpio_dt_spec current_sen_gpio =
|
|
GPIO_DT_SPEC_GET(CURRENT_SENSOR_NODE, sen_gpios);
|
|
static const struct gpio_dt_spec current_s0_gpio =
|
|
GPIO_DT_SPEC_GET(CURRENT_SENSOR_NODE, s0_gpios);
|
|
static const struct gpio_dt_spec current_s1_gpio =
|
|
GPIO_DT_SPEC_GET(CURRENT_SENSOR_NODE, s1_gpios);
|
|
#endif
|
|
|
|
/**
|
|
* @brief Configure GPIO pins for ADC sensor control
|
|
*/
|
|
static int configure_sensor_gpios(void) {
|
|
int ret = 0;
|
|
|
|
#if DT_NODE_EXISTS(VOLTAGE_SENSOR_NODE)
|
|
// Configure voltage sensor GPIOs
|
|
if (gpio_is_ready_dt(&voltage_sen_gpio)) {
|
|
ret = gpio_pin_configure_dt(&voltage_sen_gpio, GPIO_OUTPUT_INACTIVE);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure voltage sen GPIO: %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (gpio_is_ready_dt(&voltage_s0_gpio)) {
|
|
ret = gpio_pin_configure_dt(&voltage_s0_gpio, GPIO_OUTPUT_INACTIVE);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure voltage s0 GPIO: %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (gpio_is_ready_dt(&voltage_s1_gpio)) {
|
|
ret = gpio_pin_configure_dt(&voltage_s1_gpio, GPIO_OUTPUT_INACTIVE);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure voltage s1 GPIO: %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if DT_NODE_EXISTS(CURRENT_SENSOR_NODE)
|
|
// Configure current sensor GPIOs
|
|
if (gpio_is_ready_dt(¤t_sen_gpio)) {
|
|
ret = gpio_pin_configure_dt(¤t_sen_gpio, GPIO_OUTPUT_INACTIVE);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure current sen GPIO: %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (gpio_is_ready_dt(¤t_s0_gpio)) {
|
|
ret = gpio_pin_configure_dt(¤t_s0_gpio, GPIO_OUTPUT_INACTIVE);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure current s0 GPIO: %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (gpio_is_ready_dt(¤t_s1_gpio)) {
|
|
ret = gpio_pin_configure_dt(¤t_s1_gpio, GPIO_OUTPUT_INACTIVE);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure current s1 GPIO: %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Set GPIO pins for voltage measurement
|
|
* @param s0_state State for S0 pin (multiplexer bit 0)
|
|
* @param s1_state State for S1 pin (multiplexer bit 1)
|
|
*/
|
|
static int set_voltage_sensor_gpios(bool enable, bool s0_state, bool s1_state) {
|
|
#if DT_NODE_EXISTS(VOLTAGE_SENSOR_NODE)
|
|
if (gpio_is_ready_dt(&voltage_sen_gpio)) {
|
|
gpio_pin_set_dt(&voltage_sen_gpio, enable ? 1 : 0);
|
|
}
|
|
if (gpio_is_ready_dt(&voltage_s0_gpio)) {
|
|
gpio_pin_set_dt(&voltage_s0_gpio, s0_state ? 1 : 0);
|
|
}
|
|
if (gpio_is_ready_dt(&voltage_s1_gpio)) {
|
|
gpio_pin_set_dt(&voltage_s1_gpio, s1_state ? 1 : 0);
|
|
}
|
|
|
|
// Delay for GPIO settling (from devicetree or default)
|
|
#if DT_NODE_HAS_PROP(VOLTAGE_SENSOR_NODE, measurement_delay_ms)
|
|
k_msleep(DT_PROP(VOLTAGE_SENSOR_NODE, measurement_delay_ms));
|
|
#else
|
|
k_msleep(5); // Default 5ms delay
|
|
#endif
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Set GPIO pins for current measurement
|
|
* @param s0_state State for S0 pin (multiplexer bit 0)
|
|
* @param s1_state State for S1 pin (multiplexer bit 1)
|
|
*/
|
|
static int set_current_sensor_gpios(bool enable, bool s0_state, bool s1_state) {
|
|
#if DT_NODE_EXISTS(CURRENT_SENSOR_NODE)
|
|
if (gpio_is_ready_dt(¤t_sen_gpio)) {
|
|
gpio_pin_set_dt(¤t_sen_gpio, enable ? 1 : 0);
|
|
}
|
|
if (gpio_is_ready_dt(¤t_s0_gpio)) {
|
|
gpio_pin_set_dt(¤t_s0_gpio, s0_state ? 1 : 0);
|
|
}
|
|
if (gpio_is_ready_dt(¤t_s1_gpio)) {
|
|
gpio_pin_set_dt(¤t_s1_gpio, s1_state ? 1 : 0);
|
|
}
|
|
|
|
// Delay for GPIO settling (from devicetree or default)
|
|
#if DT_NODE_HAS_PROP(CURRENT_SENSOR_NODE, measurement_delay_ms)
|
|
k_msleep(DT_PROP(CURRENT_SENSOR_NODE, measurement_delay_ms));
|
|
#else
|
|
k_msleep(10); // Default 10ms delay
|
|
#endif
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif /* !CONFIG_ADC_SENSOR_SIMULATED */
|
|
|
|
#ifndef CONFIG_ADC_SENSOR_SIMULATED
|
|
/**
|
|
* @brief Read ADC value and convert to millivolts
|
|
* @return ADC reading in millivolts, or 0 on error
|
|
*/
|
|
static uint16_t read_adc_voltage_mv(void) {
|
|
#if DT_NODE_EXISTS(VOLTAGE_SENSOR_NODE)
|
|
int ret = adc_read(adc_dev, &adc_sequence);
|
|
if (ret < 0) {
|
|
LOG_ERR("ADC read failed: %d", ret);
|
|
return 0;
|
|
}
|
|
|
|
// Convert ADC reading to millivolts
|
|
// ADC reading is 12-bit (0-4095) representing 0 to ADC_REFERENCE_MV
|
|
uint32_t adc_value = adc_buffer;
|
|
uint32_t voltage_mv = (adc_value * ADC_REFERENCE_MV) / 4095;
|
|
|
|
// Apply voltage divider scaling
|
|
voltage_mv *= VOLTAGE_DIVIDER_RATIO;
|
|
|
|
LOG_DBG("ADC raw: %u, voltage: %u mV", adc_value, (uint16_t)voltage_mv);
|
|
|
|
return (uint16_t)voltage_mv;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Read ADC value and convert to milliamps (for current sensor)
|
|
* @return ADC reading in milliamps, or 0 on error
|
|
*/
|
|
static uint16_t read_adc_current_ma(void) {
|
|
#if DT_NODE_EXISTS(CURRENT_SENSOR_NODE)
|
|
int ret = adc_read(adc_dev, &adc_sequence);
|
|
if (ret < 0) {
|
|
LOG_ERR("ADC read failed: %d", ret);
|
|
return 0;
|
|
}
|
|
|
|
// Convert ADC reading to millivolts first
|
|
uint32_t adc_value = adc_buffer;
|
|
uint32_t voltage_mv = (adc_value * ADC_REFERENCE_MV) / 4095;
|
|
|
|
// Convert voltage to current based on current sensor characteristics
|
|
// Assuming a linear current sensor with specific mV/mA ratio
|
|
// This will need to be calibrated for your specific current sensor
|
|
uint32_t current_ma = voltage_mv / 10; // Example: 10mV per mA
|
|
|
|
LOG_DBG("ADC raw: %u, current: %u mA", adc_value, (uint16_t)current_ma);
|
|
|
|
return (uint16_t)current_ma;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
int adc_sensor_init(void) {
|
|
if (initialized) {
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ADC_SENSOR_SIMULATED
|
|
LOG_INF("ADC sensor initialized (simulated mode)");
|
|
LOG_INF("Simulated values: %dmV, %dmA", SIMULATED_VOLTAGE_MV,
|
|
SIMULATED_CURRENT_MA);
|
|
#else
|
|
// Initialize GPIO pins for sensor control
|
|
int ret = configure_sensor_gpios();
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to configure sensor GPIOs: %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
// Initialize ADC hardware
|
|
#if DT_NODE_EXISTS(VOLTAGE_SENSOR_NODE)
|
|
adc_dev = DEVICE_DT_GET(ADC_NODE);
|
|
if (!device_is_ready(adc_dev)) {
|
|
LOG_ERR("ADC device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
adc_sequence.buffer = &adc_buffer;
|
|
|
|
ret = adc_channel_setup(adc_dev, &adc_channel_cfg);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to setup ADC channel: %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
LOG_INF("ADC device ready: %s", adc_dev->name);
|
|
#endif
|
|
|
|
LOG_INF("ADC sensor initialized (real ADC mode with GPIO control)");
|
|
|
|
#if DT_NODE_EXISTS(VOLTAGE_SENSOR_NODE)
|
|
LOG_INF("Voltage sensor found in devicetree");
|
|
#endif
|
|
#if DT_NODE_EXISTS(CURRENT_SENSOR_NODE)
|
|
LOG_INF("Current sensor found in devicetree");
|
|
#endif
|
|
#endif
|
|
|
|
initialized = true;
|
|
return 0;
|
|
}
|
|
|
|
uint16_t adc_sensor_get_voltage_mv(void) {
|
|
if (!initialized) {
|
|
LOG_WRN("ADC sensor not initialized, calling adc_sensor_init()");
|
|
adc_sensor_init();
|
|
}
|
|
|
|
#ifdef CONFIG_ADC_SENSOR_SIMULATED
|
|
return SIMULATED_VOLTAGE_MV;
|
|
#else
|
|
// Set GPIOs for voltage measurement (example: s0=0, s1=0 for channel 0)
|
|
set_voltage_sensor_gpios(true, false, false);
|
|
|
|
// Read real ADC value for voltage
|
|
uint16_t voltage = read_adc_voltage_mv();
|
|
|
|
// Disable sensor after measurement to save power
|
|
set_voltage_sensor_gpios(false, false, false);
|
|
|
|
return voltage;
|
|
#endif
|
|
}
|
|
|
|
uint16_t adc_sensor_get_current_ma(void) {
|
|
if (!initialized) {
|
|
LOG_WRN("ADC sensor not initialized, calling adc_sensor_init()");
|
|
adc_sensor_init();
|
|
}
|
|
|
|
#ifdef CONFIG_ADC_SENSOR_SIMULATED
|
|
return SIMULATED_CURRENT_MA;
|
|
#else
|
|
// Set GPIOs for current measurement (example: s0=1, s1=0 for channel 1)
|
|
set_current_sensor_gpios(true, true, false);
|
|
|
|
// Read real ADC value for current
|
|
uint16_t current = read_adc_current_ma();
|
|
|
|
// Disable sensor after measurement to save power
|
|
set_current_sensor_gpios(false, false, false);
|
|
|
|
return current;
|
|
#endif
|
|
}
|